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Abstract

We study an air quality alert program that informs the public of high ambient air
pollution levels and broadcasts a Don’t Drive Appeal (DDA) to encourage motorists
not to drive on poor air quality days. We use fixed effects panel models and a rigorous
sub-sampling method to analyze 28 months of traffic data from Stuttgart, Germany
and evaluate whether DDAs reduce driving. We find DDAs inadvertently increase
driving by up to 2% in Greater Stuttgart. This overall effect is driven by heightened
weekend and periphery traffic during DDAs. Notably, DDAs successfully reduce city
center traffic on some weekdays and for the first five days of DDA events. However,
estimated traffic reductions never exceed 5% of daily traffic flows, suggesting that
high switching costs and dynamic norm factors may deter most motorists from
choosing the DDA’s desired response. These results provide cautionary evidence

about implementing DDAs to reduce driving.
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1 Introduction

Air quality alerts (AQAs) have become common policy instruments in urban areas for in-
forming the public of heightened air pollution levels and appealing for behavioral changes.
Growing evidence suggests that individuals, particularly those from air-pollution sensi-
tive populations, respond to AQAs by avoiding or rescheduling commutes (Saberian
et al., 2017; [Welch et al., [2005)), abstaining from strenuous outdoor activity (Noonan,
2014; Ward and Beatty}, 2015)), forgoing leisure in outdoor recreational spaces (Graff Zivin
and Neidell, 2009)), and investing in protective face masks (Liu et al., 2017)). However,
evidence that combining AQAs with Don’t Drive Appeals (DDAs) reduces private car
use is sparse (Cutter and Neidell, 2009). In this paper, we investigate the impact of
DDAs in a novel setting.

Previous evidence comes exclusively from North American cities, where DDAs are
largely ineffective in abating car use on poor air quality days (Noonan) 2014; Sex-
ton, 2012 [Cummings and Walker}, [2000) and have even inadvertently increased driving
(Tribby et al., 2013)E| Despite such shortcomings, policy-makers may still rationalize
the use of moral appeals (Ito et al. [2018; Ferraro et al., 2011} Cutter and Neidell, 2009;
Reiss and White, 2008) for targeted driving reductions. To model this thinking, we draw
from existing modal switching models (Cutter and Neidell, [2009; [Sexton), |2012; [Basso
and Silva, 2014) and introduce a theoretical framework for DDAs that predicts driving
reductions and incorporates dynamic social norm effects.

We test this model empirically in a European metropolitan setting seemingly well-
suited to DDAs due to an abundance of modal substitutes and widespread environmental
preferences in its target populationEHﬂ From January 2016 to April 2020, local authori-
ties in Stuttgart, Germany raised a Particulate Matter Alert (Feinstaubalarm, henceforth

PMA) on days with a limited atmospheric interchange capacityﬁ When local authorities

!These findings correspond with first-order expectations under the assumption of self-interested, utility-
maximizing agents. Motorists, who pollute the air and thereby impose a negative externality on others,
optimize their private well-being (including private health costs) when deciding how much to drive but
do not factor in the social cost of their choices. In aggregate, this leads to a socially-inefficient pollution
surplus. Policy-makers attempt to solve this collective action problem using moral levers (i.e. DDAs)
or congestion management policies (i.e. transit fare subsidies) to make driving relatively more costly
and shift private driving choices towards the socially-optimal level. However, we would not expect
self-interested, utility-maximizing agents to be swayed by an appeal for collective benefits at a private
cost, beyond its direct effect on private well-being.

2Stuttgart has an extensive public transportation network consisting of seventeen regional train lines,
seven suburban train lines, nineteen light-rail lines, and 390 bus lines.

3 A coalition led by the Green party has governed the state of Baden-Wiirttemberg since 2011, Germany’s
first Green party state Minister-President was elected in Baden-Wiirttemberg in 2011 and reelected in
2016 and 2021, and a Green party politician has held office as Stuttgart’s Mayor since 2013.

4Days with a limited interchange capacity have high air pollution (PMji0) concentrations and tend to have



activate the PMA, they inform the public of high ambient air pollution levels, temporar-
ily reduce public transit fares, and widely broadcast a DDA encouraging motorists to
stop driving cars and to switch to riding public transit, cycling, walking, or otherwise
abstaining from driving.

Our analysis of a 28-month panel of Stuttgart traffic data shows that vehicle flows
across the city and at its periphery increase, on average, between 0.1% and 1.9% on days
when authorities implement DDAs. We employ a dynamic linear fixed effects regression
model with a robust set of controls to show this adverse DDA effect is primarily driven by
weekend traffic increases and heightened periphery traffic. However, when disaggregating
our analysis, we find city center traffic levels do respond as intended to DDAs on Mondays
and Fridays and over the first five days of a DDA event. We use a novel regression-
discontinuity-like approach to rigorously sub-sample our data and validate our findings.
These results contribute to a growing pool of evidence that DDAs can be ineffective
(Noonan| 2014; Sexton 2012; (Cummings and Walker| 2000) or even counter-productive
(Tribby et al. 2013)) in abating driving overall, but they also provide evidence that
spatially and temporally heterogeneous alert effectiveness may be obscured in aggregate
analyses. Our disaggregate analysis finds that for certain times and locations, the DDA

can reduce traffic by up to 5% compared to non-DDA days.

2 Background

2.1 Stuttgart’s Particulate Matter Alert Program

On January 1, 2016, Stuttgart city officials introduced the PMA program as part of
a multi-policy air quality plan targeting compliance with EU air quality standardsﬁ
During the PM seasonﬁ the PMA program notified residents in the greater Stuttgart

low rainfall, low wind speed, nighttime ground inversions, and low daytime atmospheric mixing layers.
In these conditions, particulate matter pollution can easily accumulate to higher levels. The program
targeted collective environmental benefits from emissions reductions related to to driving reductions.
See Background for more details.

SUnder EU Air Quality Directive 2008/50/EC, daily average ambient PMjo concentrations are not to
exceed 50 u g/ m? more than 35 times per calendar year. From 2004 through 2017, daily ambient PM;q
concentrations at the Neckartor air quality monitor in central Stuttgart annually exceeded this legal
threshold. The city government, under the auspices of the state government, implemented an air quality
improvement plan which included establishing a low emissions zone and corresponding vehicle bans,
upgrading public transit and bicycle infrastructure, investing in cleaner public transit fleets, expanding
Park-and-Ride parking lots, lowering speed limits on busy streets, banning wood burning stoves during
PMAs, reducing public transit fees, increasing street cleaning, and incentivizing employers to recruit
employees to purchase monthly public transit tickets.

6Stuttgart authorities can call a PMA during the particulate matter (PM) season from October 15th to
April 15th, when PM levels are typically highest.
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Figure 1: Google Trends search interest for “Feinstaubalarm” (Particulate Matter Alert) in
Baden-Wiirttemberg from January 2015 through May 2021. Search volume is relative to maxi-
mum (=100) in February 2017.

metropolitan region of upcoming and ongoing poor air quality episodes via electronic
road signs, radio, television, social media, and newspapers. The PMA program’s DDA
encouraged motorists not to drive and instead use less-polluting transportation. In
contrast to health-oriented air quality alert programs in other cities, local authorities did
not explicitly warn Stuttgart residents about the negative health effects of air pollution
exposure; the PMA program focused on the collective environmental benefits or so-
called “quality-of-life improvements” that could result from a widespread temporary
switch away from carsm In early 2020, local authorities announced plans to abandon the
PMA program after April of that year, citing its success in reducing air pollution in the
cityﬁ

Based on commuting statistics from the German Federal Employment Agency and
the Baden-Wiirttemberg State Statistical Office, we estimate that roughly 382,000 com-
muters (73% of individuals employed in the city) travel by car or motorcycle into and
out of or within the city of Stuttgart on a given workday, compared to 66,000 (13%)
who take public transit and 75,000 who walk or bike (14%)@ In two telephone sur-

"Residents may certainly have acknowledged negative health impacts of air pollution exposure ez ante,
may have become informed of them through adjacent media programming or may have inferred them
from the nature and language of the program.

8 Stuttgarter Zeitung. 2020. Bessere Luft in Stuttgart: Feinstaubalarm wird im April abgeschafft. Jan-
uary 17, 2020.

9Hence, for each percentage point change in daily car commuters on DDA days, we estimate that about
4,000 car commuters switch their mode of transit or work from home. We anticipate that these are
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Figure 2: DWD Decision Tree for calling and ending a PMA. The “Particulate Matter Alert”

outcome leads authorities to broadcast a Don’t Drive Appeal (DDA). Adapted from information
from DWD.

veys conducted by the city government in early 2016, 90-92% of respondents (n;=1,008,
n2=1,004) reported having heard about the PMA program and 15-25% of respondents
reported lowered car use on DDA dayslT_U] The survey results and online search query
data (figure|l)) confirm that PMA messaging arrives in the general population. However,
survey responses were self-reported. Surveyors neither elicited nor observed the actual

extent of driving reductions, so findings ought to be interpreted cautiously.

2.2 Particulate Matter Alert Conditions and Dynamics

Stuttgart authorities decide whether to call a PMA and broadcast a DDA using a decision
tree (figure [2)) based on six binary atmospheric conditions. On each day during the PM
season, the German Weather Agency (DWD) takes stock of the following conditionsE-]

e Condition #1: Whether the daily mean PM;jo concentration at Neckartor monitoring

station is over 30 pg/m3 and no rainfall is forecasted until 12am of the first forecast day.

L

low ballpark estimates for the daily number of vehicles on Stuttgart roads, as our calculations do not
include non-employed motorists (e.g. retirees, students, unemployed people, etc.), nor do estimates
include other reasons for driving into the city (e.g. business travel, delivery, construction, etc.)

0See Befragung zum Thema Feinstaubalarm in Stuttgart und Umgebung (Omnitrend, [2016b) and Be-
fragung zum Thema Feinstaubalarm in Stuttgart und Umgebung im Zeitraum 26.2.2016 bis 28.2.2016
(Omnitrend} 2016a)

See Schadstoffrelevante Kriterien des Deutschen Wetterdienstes (DWD), [2020)

128nowfall and sleet are treated as rainless.




o Condition #2: Whether rain is forecasted for both the bridge day and the first forecast
day.

o Condition #3: Whether wind blows with an average wind speed over 3 km per hour from
180°-330°.

e Condition #4: Whether there is a nighttime ground invcrsionH
o Condition #5: Whether there is a low daytime mixing layerE

e Condition #6: Whether average wind speed is below 3 km per hour.

According to the outcome of each binary condition and the corresponding decision rules
(figure , DWD classifies the atmospheric interchange capacity as either “not limited,”
“limited” or “strongly limited” with only the latter leading to a PMA. As the primary
condition, fulfillment of Condition #1 is sufficient for calling a PMA. If Condition #1 is
not fulfilled, Conditions #2 and #3, and either Condition #4 or Condition #5, and at
least four criteria overall must be fulfilled for the city to call a PMA.

If local authorities decide to call a PMA, in the early afternoon of the issue day they
begin notifying the public of high air pollution levels and about a forthcoming DDA
that goes into effect approximately 36 hours later (see figure [3f DDA day: -1). A bridge
day (DDA day: 0), when the public continues to be informed about the PMA but the
DDA has not gone into effect, follows the issue day. The DDA comes into effect after the
bridge day at 0:00 am of the first forecast day (DDA day: 1). The DDA must continue
for at least a second day (DDA day: 2) and remains in effect until the DWD forecasts two
consecutive days where the atmospheric interchange capacity is not “strongly limited.”
Local authorities will announce the end of the PMA and DDA two days before messaging
subsides.

Importantly, PMA and DDA designation is based on weather forecasts, not actual
weather conditions on a given day. If authorities raise a PMA, unanticipated meteo-
rological changes between issue day and any subsequent DDA day (first, second, third,
etc.) may improve atmospheric interchange capacity to the extent that some PMA con-
ditions may no longer be fulfilled on that DDA day. On these days, a DDA may have
been broadcast although it need not have been. By similar logic, actual meteorological

conditions may worsen the atmospheric interchange capacity to the extent that, on a

3Nighttime ground inversion is defined as an air layer within which temperature increases with altitude.
Such an inversion traps particulate matter in the Stuttgart valley.

'4The mixing layer height indicates the interchange capacity of the low lying air masses. The lower the
mixing layer height, the smaller is the interchange capacity. The criterion is fulfilled if the mixing layer
height is lower than 500 meters during the day.



PMA and DDA end
DDA in effect for at least DDA remains in effect when 2 consecutive
PMA announced at 2 days starting at 12am while conditions are Forecast Days do not
12pm on Issue Day of 1°** Forecast Day still fulfilled fulfill PMA conditions
1 ) A |
[ If If \f |
Day: Issue Bridge 1st Forecast 2nd Forecast  3rd Forecast n-th Forecast n+1th Forecast
Day Day Day Day Day Day Day
Time: 12am 12pm 12am 12am 12am 12am 1Zam 17am 12am 12am

' ' N I |,
| | 4 I I

DDA Day: -1 0 1 2 3 n n+1

Figure 3: Particulate Matter Alert (PMA) and Don’t Drive Appeal (DDA) timing. Information
from the City of Stuttgart.

given non-DDA day, a DDA should have been broadcast, even though it was not. At
the margin, local authorities may also exercise limited discretion in initiating a PMA
event and broadcasting the DDA, specifically in cases when thresholds are just barely
met (e.g. a small amount of rainfall may not be deemed sufficient to clear particulates

from the air).

3 Theoretical considerations

Stuttgart’s policy-makers employ a DDA in the ostensible belief, publicly expressed,
that a morally framed request directed at car owners, combined with a public transit
subsidy, will reduce driving. To see whether this belief can be rationalized, we develop a
plausible mental model that formalizes this thinking. This simple theoretical framework
is informed by existing models of modal switching for the Spare The Air (STA) program
in the San Francisco Bay Area (Cutter and Neidell, 2009; |Sexton, 2012)) and urban
congestion management policies in London and Santiago, Chile (Basso and Silval [2014]).
To adapt the framework for the case at hand, we explicitly downplay the individual
health aspects at the heart of the Bay Area’s STA program, which are not part of
Stuttgart’s DDA, and instead emphasize its moral appeal considerations.

The literature identifies injunctive and descriptive norms as the main pathways
through which a moral appeal can change the behavioral calculus of which action to
choose (Bicchieri, |2005). Injunctive norms define how an individual ought to act. They
constitute abstract moral absolutes, that is behavioral benchmarks independent of other
people’s behavior. Descriptive norms, on the other hand, reflect how most other people

act. They are observable behavioral patterns in the population. In both cases, the lit-



erature has argued, individuals receive emotional rewards or losses from themselves and
others as a function of adherence to or deviation from the norm. The associated feelings
of righteousness and approval and of shame and guilt enter the utility function and can
thus affect decision-making (Battigalli and Dufwenberg, [2007}; Zafar, [2011)).

Policy-makers are unlikely to be unaware of the subtle distinction between injunctive
and descriptive norms. Yet, their mental model of DDAs may well capture the idea of
injunctive norms by postulating that a DDA makes people attach positive feelings to
deciding not to driveE Descriptive norms could be captured by attaching to driving
a negative feeling whose strength depends on the effectiveness of the appeal on others:
Guilt and shame are strongest if the individual driver finds himself the only driver
on the road, particularly if watched by non-drivers. They do not arise when traffic
density during the DDA event is the same (or even higher) than before (Zafar, 2011)).
Considerations of positive and negative feelings triggered by adhering and deviating
from norms would provide policy-makers with a behaviorally informed model of how car
owners respond to the introduction of a DDA. They can also be extended to the question
of how effective a DDA is likely to be over time. Policy-makers’ intuition that the impact
of DDAs wears off over a multi-day DDA event and needs time to recover between DDA
events accords with well-established findings in psychology. Experimental tests of the
theory of “ego depletion of self control” (Baumeister et al., 2000) consistently show that
the emotional costs of not complying with norms that require a change from previous
behavior decrease over time (Dang} 2018) and require a ‘recovery period’ between norm
activation events (Tice et al.,2007). Considerations of both a static and dynamic nature
are therefore likely to populate policy-makers’ mental models of how a DDA affects
driving.

To give some analytical heft to policy-makers’ reasoning, we assume in line with the
static congestion model of Basso and Silva; (2014)) that at any given point in time ¢, each
individual ¢ with access to a car and wishing to travel decides between driving (D) and
not driving (ND) to reach their destinationm Driving is associated with utility (time

arguments suppressed)

UP = VP — 7tP(1+ QP) — pP — 14B; max {@D -Q"); 0} (1)

5 Equivalently, it could be introduced as a negative feeling attached to driving. Analytically, it leads to
the same results.
1These model formulations purposefully neglect the extensive margin of deciding not to travel.



while not driving is associated with utility

UND — NP _ NP _ pND(1 — 1 48) — 1,4G (2)
with 14 an indicator variable that is one if an appeal has been issued and zero
otherwise.

Expressions and ({2)) capture that in the absence of a DDA (14 = 0), the respective
utilities are a function of the intrinsic value that individual ¢ associates with driving D
and not driving N D, VZ-D and VZ-N D the expenses of driving and not driving at market
prices, p” and p™P, and the mode—independen@ opportunity cost of time 7; multiplied
by the mode-specific travel time, t” and tNP. As in other models, total driving time
is approximated as linear in car traffic density, measured by the aggregate demand for
driving QP, along the entire itinerary, tP(1 + QP ) The driving-related air quality
impacts that play a central role in the health-messaging models by |Cutter and Neidell
(2009) and [Sexton! (2012) are neglected in our representation of the policy-makers’ mental
model of moral appeals.

When a DDA is issued (14 = 1), three additional factors in expressions and
are activated. First, in , the policy-maker reduces the cost of public transit through a
discount §, reducing non-driving expenses to p™¥ (1 —4§). Second, also in , the policy-
maker conveys through the appeal an injunctive norm that foregoing the use of car is
the ‘right thing to do’. The affective benefits of not driving are captured by a warm
glow parameter GG associated with norm compliance. Third, in , the DDA conveys a
descriptive norm about driving: The greater the reduction in traffic densities during the
DDA event relative to before, the greater the emotional cost to someone still driving.
To approximate this effect, a simple linear formulation captures the emotional costs

associated with violating the descriptive norm by driving as F; max {@D - QP; O}, with

@D denoting aggregate demand for driving outside a DDA event. For traffic densities
QP at or above pre-DDA levels, the emotional cost of driving is zero; for densities below,
it is Ei(@D — @QP). In line with the “ego depletion” mechanism, Fj; is highest on the
first day of a multi-day DDA event (E;) and declines to zero over time

As in |Basso and Silval (2014), equilibrium traffic is the aggregate outcome of indi-

"Empirical evidence points to mode dependence: Time spent in one’s own car has a lower opportunity
cost than time spent in public transit. We abstract from this detail here.

BTotal travel time is t when no other car is on the road (QD = 0) and increases in proportion to use
by drivers. The linear approximation overestimates the effect of density on travel time for low levels of
density and vice versa for high levels. This will lead to a slight overestimation of the effect of a DDA
close to road capacity.

19We suppress the time argument in this sketch for notational simplicity.



viduals deciding to drive if UiD . UZ-N D> 0. Across individuals, this leads to aggregate

demand for driving of

QP = Z 17, (3)

with ILZD and indicator variable that is one if for individual 1, UZ»D — UZ-N D> 0.

As a result of the congestibility of the road network, there is a demand equilibrium
outside DDA events with a simple closed-form solution under the assumption of identical
agents of the type

Q" = T%D {AV — Ap — TAt} (4)

with AV = VP — VNP denoting the difference in intrinsic values, Ap = p? — p™V'P the
difference in expenses, and At = tP — tVP the difference in travel time between driving
and not driving. Equilibrium traffic density increases in the intrinsic value differential
and decreases in the price and travel time differential between driving and not driving.
It is scaled down by the effective cost of time of driving 7¢t” on account of the congestion
externality that every driver imposes on all other drivers in the road network.

A few steps of simple algebraic manipulation also yield the equilibrium traffic density

during a DDA as
Qv -gP - e )
Tt — F
As intended by the policy-maker, equilibrium traffic density is always lower when a
DDA is in eﬁectm The reduction increases in the warm glow of the appeal, G, and in
the public transit discount, §. Their effect size is scaled by the effective cost of driving
time, 7t net of the emotional cost of driving when others do not, E@ It also follows
from equation that traffic density is lowest at the beginning of a DDA when E = E
such that

—p G+pPs
QP=q" -2 (6)
TtV — F
and increases as the emotional costs of non-compliance fall with a continuing DDA:

_dQP  G4pNPs
dE  (1tP — E)?

>0 (7)

20This statement holds for positive traffic densities, which require that 7t — E > 0.

2ncidentally, the static congestion model also highlights the presence of an instrument for inducing
a switch from driving that policy-makers did not consider: Increasing travel time t” through speed
restrictions.
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Figure 4: Illustrative evolution of traffic densities for a scenario with three DDAs.

A policy-maker reasoning along the lines sketched in expressions (|1f) to can there-
fore conclude that issuing a DDA induces predictable temporal patterns: At the onset
of a DDA, when the emotional costs of non-compliance are high (E), the reduction in
traffic density is greatest, leading to a minimal traffic density of QD . As potential drivers

progressively care less about non-complying, traffic density increases again and reaches a
D G+pNP5 _ Ap _ =D
— Gl g < g

long-run equilibrium level QD > QD given by limg_,0 QP = Q

As an illustration, figure [4] shows the evolution of traffic densities associated with
a fictional scenario in which three DDAs are called between time T; and Tg: Baseline
traffic density starting at time 0 is @D. The first DDA, called at 77, initially brings
traffic levels down to QD as implied by expression @ Over time, the emotional cost of
non-compliance E wears off and traffic densities increase to Q When the DDA is called
off at 15, traffic returns to @D and the “ego” can recover in the time interval [Ty; T3]. At
time T3, a second, shorter, DDA is called, followed by a shorter recovery interval [Ty; T5].
As a result of incomplete recovery, the third DDA does not benefit from the same initial
effect on traffic density as the two preceding episodes, falling short of traffic reduction
QD at time 75. From there, traffic again increases before the DDA is suspended at
time T§g, just before traffic reaches the long-run equilibrium QD that prevails when “ego
depletion” reduces the emotional cost of non-compliance to zero.

Together, equations (4f) and emphasize three aspects. One is that policy-makers
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can rationalize their belief in the effectiveness of DDAs: Invoking the norm-setting effects
of DDAs in a behaviorally informed model provides a causal mechanism for affecting the
choice whether to drive or not. The second is that the predicted equilibrium car traffic
density under a DDA is strictly below non-DDA levels: The possibility that traffic might
increase when a DDA is in force would require the policy-maker to consider a larger set of
mechanisms. The third aspect is that the dynamic patterns of driving choices within and
between multi-day DDA events make specific empirical predictions: Traffic reduction is
expected to be greatest on the first days of a multi-day DDA event before tapering off
to below-normal levels and is expected to be negatively affected when DDA events are
spaced close together.

While the framework is good at capturing the moral appeal considerations of policy-
makers, it probably does injustice to their understanding of the complexity of driving
decisions. For example, it neglects issues of expectations and learning that are likely to
be particularly important during early phases of the DDA program as car owners closely
observe traffic densities. It also neglects problems of intertemporal substitutability of
car-based activities (Basso and Silva, 2014)), of health-related aspects of driving decisions
(Cutter and Neidell, [2009; |Sexton,, 2012), and of the congestibility of public transit (Basso
and Silvay, 2014). These complexities can be expected to impact on the success of DDAs
— and to be part of the ex-ante assessment undertaken by policy-makers in a more or

less systematic fashion.

4 Data

4.1 Traffic Data

We obtain hourly vehicle traffic counts for the five PM seasons from January 2016 to April
2020 for 60 automatic traffic counters (ATCs) operated by the City of Stuttgart’s Intre-
grated Traffic Control Center (Integrierte Verkehrsleitzentral, IVLZ) and from January
2016 to December 2019 for twenty ATCs from the Federal Highway Research Institute
(Bundesanstalt fiir Strassenwesen, BaSt). Daily, counter-level traffic flows are recorded
as the sum of twenty-four hourly counts if data are available for all 24 hours of a day,
otherwise they are recorded as missing. We exclude all observations from 2020 due to
the unprecedented effect of COVID-19 lockdowns on mobility and restrict our sample to
counters that have at least 75% of daily observations during the PM seasons from Jan-
uary 2016 through December 2019 (n=43). Of 31,519 possible counter-day observations

spanning 43 counters and 733 particulate matter season days, we observe 27,290 vehicles

11
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Figure 5: Map of Stuttgart with traffic counter locations by type (center vs. periphery) and

weather and pollution monitoring sites.
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Table 1: Summary Statistics: Vehicles per Day

Counter Set  Counters Obs. Mean SD Min Max

All 43 27,290  23,340.60 18,588.50 85 89,384
IVLZ 31 18,494 13,714.88 10,076.05 85 52,697
BaSt 12 8,796  43,579.11 15,942.36 10,256 89,384
Periphery 29 18,503 25,856.94 20,781.67 662 89,384
Center 14 8,787  18,041.86 11,060.13 85 52,697

per counter-day observations (86.6%).

On average, 23,341 vehicles pass each counter each day, with traffic increasing mod-
erately (+6%) over the course of the work week before dropping off on Saturdays (-14%)
and more considerably on Sundays (-30%) relative to Mondays. Public and school holi-
days also have considerably lower traffic levels (-19% and -38%, respectively) compared
to non-holidays. Aggregate traffic flows are also subject to temporary shocks (e.g. acci-
dents, congestion, and construction sites), seasonal trends, and long-term shifts in road
usage (e.g. vehicle bans, road closures, new road infrastructure, transit alternatives,
macroeconomic shocks). A visual comparison of traffic count box plots on DDA days
vs. non-DDA days (excluding holidays) in figure @] suggests that traffic levels are similar
across DDA status on all days of the week.

We categorize our set of traffic counters into those within 5km of Stuttgart’s admin-
istrative centroid (n=14) and those at the city’s periphery beyond 5km from the centroid
(n=29) and map these locations in figure 5| This 5km radius proxies for the city center
and captures its topographic setting at the middle of a basin. It also reflects the pres-
ence of park and ride infrastructure at the periphery, where parking opportunities are
located for car commuters wishing to take public transit to reach the city center. Table
shows that average periphery traffic flows are considerably higher (25,857 vehicles per
counter-day) than city center traffic flows (18,042 vehicles per counter-day).

Our traffic data limits the scope of our analysis in three ways. First, we analyze
aggregate traffic counts and cannot observe the intensive and extensive margins of driv-
ing. That is, we cannot decipher between a relatively small set of automobiles on the
road being driven more intensively (i.e. high daily vehicle kilometers traveled per car)
and a proportionally larger set of automobiles being driven relatively less intensively
(i.e. fewer daily vehicle kilometers traveled per car). Second, we are not able to observe

individual-level modal switching[??] Third, our data set consists of traffic flows on a sub-

22We have inquired at the city and its public transportation partners about alternative transit data.
The city nor its public transportation partners maintain turnstiles at public transit stations that
would deliver daily measures of public transit use. Available monthly ticket sales do not have the
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Vehicles per Counter-Day by Day-of-the-Week and DDA Status
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Figure 6: Box plot of vehicles per counter-day. Median, inner quartile range, lower and upper
bounds, and outliers (beyond 1.5 X inner quartile range) are depicted by day of the week and
DDA status. Holidays are excluded. Mean vehicles per counter-day (VPD) equals 23,341.

set of streets in Stuttgart. The 43 traffic counters we use in our analysis are distributed
across 22 sites, which we believe are representative of overall city conditions as they are

dispersed across different road types and neighborhoods.

4.2 Weather, Pollution, and DDA Data

We follow the AQA literature to control for daily weather factors which may influence
driving such as temperature, precipitation by type, wind speed, and sunshine hours. We
retrieve weather data for the Schnarrenberg weather station (See location in figure 5]
from DWD Open Data and assume that weather conditions there are the best available
measure of meteorological factors that influence motorists. Air pollution data come

from the Baden-Wiirttemberg State Institute for the Environment, Survey and Nature

temporal or spatial resolution necessary for our analysis. Stuttgart also collects cycling data at two
automatic bicycle counters over the time period of interest, but this data is not rich enough for our
analysis.
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Table 2: Summary Statistics: Weather and Pollution Variables by DDA Status

Non-DDA Days DDA Days
Variable Obs. Mean SD  Min Max Obs. Mean SD Min Max
DDA 483 0 0 0 0 250 1 0 1 1
Mean Temperature (°C') 483  6.20 3.99 -7 16.5 250 4.38 5.61 -9 16.2
Rainfall (mm) 483 1.23 2.80 0 20.3 250 0.06 0.28 0 2.5
Snowfall (mm) 483 0.34  1.52 0 17.3 250 0.08 0.42 0 4.1
Sleet (mm) 483 0.34 1.45 0 183 250 0.05 0.30 0 2.4
Relative Humidity (%) 483 7745 9.85 38.38 9854 250 73.92 12,52 26.92 98
Sunshine Hours 483 234 281 0 12.31 250 5.13  3.90 0 12.41

Mean Windspeed (km/h) 483 337 124 038 83 250 257 087 09 5.9
Daily Mean PMi (ug/m®) 466 27.72 17.84 4 202 243 54.22 24.34 17 176

Conservation (Landesanstalt fir Umwelt Baden- Wiirttemberg, LUBW), which monitors
PM;j( concentrations in the city center (See location in figure . We manually input
DDA status from a Stuttgart website as a binary variable that equals one on days when
a DDA is called and zero otherwise (figure [7)).
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Figure 7: DDA days from January 2016 to April 2020.

In comparison to other DDAs and AQAs studied in the literature, Stuttgart’s DDA
is implemented very frequently and for long durationsE] Over 733 possible PMA days
from January 2016 through December 2019, Stuttgart authorities broadcast a DDA on
250 days (34%) in 44 multi-day DDA events with the average DDA extending 5.7 days.
Due to Stuttgart’s PMA design, DDA days are, on average, colder, less windy, sunnier,
and more polluted than non-DDA days (table . They also experience less precipitation
(i.e. rain, snow, sleet) and fewer heavy precipitation events. DDA days are typically

preceded by days with similar weather and pollution levels, while the same holds for

ZFor example, in [Cutter and Neidell| (2009) about 4.5% of days in San Francisco are treated with an
Spare the Air alert, in [Saberian et al.| (2017) about 1.3% of days in Sydney experience an ozone alert
day, and in [Tribby et al.| (2013)) about 16% of PM season days have either a yellow or red AQA.
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Table 3: DDA Days by Day of the Week

DDA Day # Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total

1 12 7 8 5 2 4 6 44
2 6 12 7 8 5 2 4 44
3 4 2 9 7 7 3 2 34
4 0 3 2 9 6 5 3 28
5 2 0 3 2 9 4 4 24
6 3 2 0 2 2 6 4 19
7 3 2 1 0 2 1 6 15
8 6 2 1 1 0 1 0 11
9 0 5 2 1 1 0 0 9
10 0 0 3 2 1 0 0 6
11 0 0 0 3 1 1 0 5
12 0 0 0 0 2 0 1 3
13 1 0 0 0 0 2 0 3
14 0 1 0 0 0 0 1 2
15 1 0 1 0 0 0 0 2
16 0 0 0 1 0 0 0 1
Total 38 36 37 41 38 29 31 250

non-DDA days. Authorities are also less likely call DDAs on public and school holidays,
possibly because they expect lower traffic levels on these days. As figure 7 depicts, only
few DDAs fall on public or school holidays (6%, 14 of 250 DDA days) compared to
non-holidays (94%, 236 of 250 DDA days). For this reason, we believe that holidays
may systematically differ from non-holidays, so we remove public and school holidays
from parts of our analysis. Authorities also often announce PMAs on weekends and
at the beginning of the week, leading to a large share of DDAs starting on Mondays,
Tuesdays, and Wednesdays (table . Overall, there is a fairly uniform distribution of
DDA days across the working week with weekends being treated with DDAs less often
than weekdays.

5 Empirical Framework

5.1 Estimation Strategy

To recover the effect of calling a DDA on traffic, we employ a dynamic panel estimation
model and restrict our sample around the DDA trigger in a regression-discontinuity-like
approach. Our strategy tunes estimation techniques from adjacent studies (Cutter and
Neidell, 2009; |Sexton, 2012; [Noonan, 2014)) to Stuttgart’s DDA design. Due to the DDA
design, the data-generating process in Stuttgart depends strongly on previous periods.

This motivates the inclusion of lagged controls and careful consideration of treatment
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counterfactuals. We begin by introducing the estimation equation underlying our main
regression model before discussing our identification strategy and its accompanying sub-
sampling scheme in the following subsection.

We estimate the impact of Stuttgart’s DDA on traffic levels using an ordinary least

squares (OLS) regression model described by the following equation:
Yit = P1DDA; + 01Yit—1 + 0o My + 03My—1 + 0aMy—o + 65 M3+ vi + e + €, (8)

where y;; is the number of vehicles passing counter ¢ on date ¢, and 31 estimates the
overall DDA effect as the average difference in daily traffic counts between DDA-days
and non-DDA days across all counters. The variable of interest, DD A;, takes on a value
of one on DDA-days and zero otherwise. This model uses a lagged dependent variable
(yit—1) to adjust for previous day traffic shocks (e.g. traffic re-routing, construction),
contemporaneous and lagged environmental controls (M, My_1, M;_o, M;_3) to account
for multi-day weather patterns@ day-of-the-week and holiday dummies to address intra-
weekly traffic trends and traffic shifts during vacation periods, counter-level fixed effects
(7:) to account for counter-specific traffic levels, and year-month time fixed effects (¢;) to
capture seasonal trends in car use and policy discontinuities that might influence overall
traffic levels (e.g. varying public transit prices, vehicle bans, new infrastructure, etc.).

Our estimation strategy tests the null hypothesis that the DDA effect is equal to zero
(Ho : f1 = 0), or, in other words, that traffic flows do not differ significantly on days
when a DDA is broadcast. If, as intended, private car use is lower on DDA days, the
DDA effect coefficient must be negative (51 < 0) and differ significantly from zero. In
the regression model defined by equation (8), we employ Huber-White standard errors
to address heteroscedastic residuals, and we account for serial correlation and spatial
auto-correlation by clustering standard errors on traffic counter siteﬁ All regressions
are also carried out with a logged dependent variable@

We are also interested in evaluating whether DDA effectiveness varies over time and

spacem To inspect for temporal heterogeneity, we successively augment equation

24We follow the literature on air quality alerts and transportation choice in including precipitation,
temperature, sunshine, and humidity as control variables. In addition to absolute precipitation by
type, we also include squared terms for rainfall (mm?), snowfall (mm?), and sleet (mm?).

2 Note there are typically two counters at each site with one corresponding to each traffic direction.

26T,0g-scaling the outcome variable approximates differences in the outcome variable as percentage
changes.

2TPrevious research on AQAs has highlighted spatial and temporal heterogeneity. For example, [Tribby
et al.| (2013)) find evidence of spatial displacement effects where traffic increases at Salt Lake City’s
periphery. [Saberian et al.| (2017) and |Graff Zivin and Neidell (2009) find evidence of alert fatigue on
the second day of ozone alerts.
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with day of the week (DOW; x DD A;) and year (Y EAR; x DD Ay) interaction terms to
evaluate how DDA effectiveness differs within the week and year-by-year, respectively.
We also test for treatment heterogeneity by DDA event day (e.g. first day effect vs.
second day effect, etc.) by adding a DDA day interaction term (DDADAY; x DDA;) to
equation . To test for spatial heterogeneity, we run our regression models separately
for groups of counters at the city’s periphery and center, and we fully disaggregate

our panel and estimate individual counter-level DDA effects using time-series models
synonymous with equation @

5.2 Identification Strategy

In our setting, local authorities determine DDA treatment status based on six observed
or forecasted atmospheric conditions, and they only lift this assignment once two consec-
utive days do not fulfill these conditions (figure [2 section 2.2). This multidimensional
treatment protocol poses two main challenges for successfully identifying the DDA’s
effect on car-trip demand.

First, a given day’s DDA treatment status is not determined by a single contempora-
neous atmospheric parameter (e.g. a PMjg threshold value) but is rather a multivariate
function of previously-realized atmospheric observations and uncertain weather predic-
tions. This complicates the use of a canonical regression discontinuity design, as imple-
mented by |Cutter and Neidell (2009) or Noonan| (2014), because multiple atmospheric
thresholds must be fulfilled simultaneously and multiple pathways to a DDA exist. There
is no single cut-off point we could exploit as a policy discontinuity. Also, due to forecast
uncertainty, actual weather conditions can deviate from those outlined in the treatment
protocol, jeopardizing whether treated days and untreated days are subject to respec-
tively similar atmospheric conditions. Finally, discretion available to local authorities
when evaluating uncertain weather forecasts may also bias whether DDA events are, in
fact, initiated or terminated when treatment conditions suggest they should have been.
Inspecting treatment conditions and classifying DDA days by their similarity to control
and treatment days could help alleviate these potential complications.

Second, we anticipate that DDA determinants (i.e. weather) directly influence trans-
portation demand and may confound our DDA effect estimates. In particular, persistent
atmospheric conditions, which are endogenous to the treatment protocol, may correlate

with modal switching. For example, some motorists may begin riding public transit or

%8Here counter-level fixed effects are omitted due to the lacking panel structure. These counter-level
models do accept monthly counter-specific time fixed effects, which were otherwise averaged out in the
full panel model.
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cycling due to prolonged dry, sunny weather, while such conditions also increase the
likelihood that a DDA is called. Viewing each day as an exclusively independent obser-
vation would ignore strong previous day atmospheric and behavioral dependencies (see
section , so a meaningfully selected control group of untreated multi-day events would

better capture Stuttgart’s DDA design features.
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Figure 8: Reclassified DDA days from January 2016 to April 2020.

To address these two concerns, we limit our sample to comparisons of true positive
DDA days, when the multi-day DDA conditions were observed and a DDA was broadcast,
with false negative “counterfactual” DDA events, when DDA conditions were observed
but no DDA was called. We use reported weather and pollution data to reconstruct the
DDA conditions, slightly loosen the conditions around the DDA trigger, and thereby
identify a set of multi-day non-DDA periods with atmospheric conditions most similar
to actual DDA days (figure @ This approach allows us to “zoom in” on sets of days on
either side of the DDA trigger in a regression-discontinuity-like manner and compare sets
of days that were treated with a DDA with ones that were not. Using actual weather
data rather than weather forecast data abstracts from one empirical aspect, namely
that some motorists may switch modes based on multi-day weather forecasts, which
are not captured in our observational data. However, we assume local authorities and
motorists have similarly accurate weather forecasts at their disposal so that motorists
cannot confidently predict DDA policy errors.

A further challenge to identification may arise due to reverse causality between the
outcome of interest, car trip demand, and DDA treatment status. Changes in car trip
demand could conceivably cause PMjq levels to rise above or fall below the threshold
of 30 pg/m3. However, car trip demand has no influence over the necessary second
sub-condition of Condition #1, namely whether rainfall is anticipated or not, nor over

the remaining five atmospheric conditions. Consequently, we see it as improbable that

29We explain this reclassification scheme in detail in appendix
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car trip demand could cause treatment status to change as treatment status is largely
determined exogenously. It is also possible that local authorities’ expectations about
car use affect their decision to call a DDA. For example, local authorities may be less
likely to broadcast a DDA if they anticipate that traffic levels will already be low due
to school or public holidays, biasing DDA effect estimates upward. While we cannot
observe policy-maker’s traffic expectations, we account for this by removing days with
traffic level outliers (e.g. holidays) in some specifications.

There are a number of unobservables that could plausibly affect our analysis. First,
our data do not allow us to control for same-day traffic shocks (e.g. traffic jams, ac-
cidents, large events, etc.). Barring remarkable changes in traffic conditions on DDA
days or considerable spatial displacement effects, we think it is unlikely that same-day
traffic shocks would differ systematically on DDA days compared to non-DDA days or
significantly bias our DDA effect estimates. Furthermore, we expect temporary traffic
displacement to average out across nearby counters. Second, we are unable to observe
individual motorists’ expectations or their PMA and DDA information exposure (e.g.
consumption of PMA-adjacent programming, etc.) over time. If such aspects are salient
and do influence driving choices during DDAs, we anticipate that they will aggregate
systematically in the population and result in detectable differences in DDA effective-
ness over time. Finally, the announcement of an upcoming DDA may change motorists’
choices until the DDA actually takes effect (i.e. on the issue or bridge day). We can-
not observe whether individual motorists take additional trips on issue and bridge days
to avoid taking trips during the DDA, but such a scenario would bias our DDA effect
estimates downward. We account for these anticipatory effects by removing issue and

bridge days from our sample in some specifications.

6 Results

6.1 Overall DDA Effect

Our regression results show that the overall daily DDA effect is positive and of small
to negligible magnitude across a variety of different samples and specifications. On
average, the number of vehicles passing each counter increases by 0.1% to 1.9% across all
counters on DDA days compared to non-DDA days. Our main specification, a dynamic
panel model that includes single-day traffic lags, contemporaneous and lagged weather
controls, counter-level fixed effects, and year-month fixed effects estimates that traffic

increases by 1.02%, or 239 additional vehicles per counter-day, on DDA days in the full
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sample (table |4 Column 1). This estimate is significant at the 5% significance level.
Back-of-the-envelope calculations equate this DDA effect with a net increase of about
3,896 motorists in Greater Stuttgart on DDA days@

Table 4: OLS Regression Results: Overall Daily DDA Effect

(1) (2) 3) (4) () (6)
VPD VPD VPD VPD VPD VPD
DDA 238.6™  436.1"  120.4™ 64.55 105.1* 27.55

[+1.02%] [+1.87%] [+0.51%] [+0.27%] [+0.45%] [+0.12%]
(69.82)  (111.4)  (38.57)  (57.95)  (44.82)  (82.37)

Full Sample: Y N N N N N
TP & FN Sample: N Y N Y N Y
Holidays Excluded: N N Y Y Y Y
Bridge & Issue Days Excluded: N N N N Y Y
Observations 26,626 11,996 20,899 10,040 16,787 7,641
Counters 43 43 43 43 43 43
Days 733 381 584 320 509 272
DDA Days 250 219 236 212 236 212
Non-DDA Days 483 162 348 108 273 60
Mean VPD 23,341 24,046 24,238 24,586 24,361 24,764

Dependent variable is vehicles per counter-day (VPD). Robust standard errors clustered on 22
counter sites in parentheses. All models include single-day lagged traffic, a full set of weather controls,
first, second, and third-day lagged weather controls, counter fixed effects, year-month fixed effects,
and day-of-the-week and holiday dummies. Percent change relative to mean VPD in brackets.

*: Significant at 10%, **: Significant at 5%, ***: Significant at 1%.

The magnitude of our overall DDA effect estimate increases to 1.87%, or 436 ad-
ditional vehicles per counter-day, when we restrict our sample to days that our DDA
reclassification scheme categorized as true positive or false negative (table 4] Column 2).
To make sure our model compares similar DDA and control days, we further restrict
our sample by excluding holidays (table [4] Columns 3 and 4) and removing bridge and
issue days (table |4 Columns 5 and 6). With these restricted samples, our DDA effect
estimates decrease in magnitude and statistical significance but do not switch signs.

This result is robust to a number of alternative specifications. In appendix [B] fig-
ure shows the evolution of our overall DDA effect estimate across 90 specifications
where we successively build up equation term-by-term. Each panel of figure |14| cor-
responds to a different sample (see caption, same samples as columns in table [4f) and
within each panel, from left to right, we separately estimate the DDA effect for each
specification, progressively adding year-month fixed effects, site standard errors, mean

temperature, rainfall, snow, sleet, humidity, sunshine, mean wind speed, lagged VPD,

30This assumes 382,000 motorists on an average work day.
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and first, second, and third day control variable lags. The last specification in each panel
corresponds to the results shown in table [d] We also estimate our main specifications
with logged traffic counts (see table [5{in appendix . Across the board, the magnitude
of these DDA effect estimates is below 2% of mean daily counter-level traffic. None
of the models estimates a statistically significant negative DDA effect in line with the
DDA’s goal of reducing traffic.

6.2 Spatial and Temporal Heterogeneity

Our results in the previous section estimate the overall daily effect of a DDA on traffic
levels. As spatially and temporally heterogenous effects are plausible, we disaggregate
our model across space and time and estimate separately the daily DDA effect for dif-

ferent locations and time periods.
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Figure 9: Counter-level daily Don’t Drive Appeal (DDA) effect (percent change in vehicles per
counter-day) sorted by counter-level point estimate and distance to city center. Percent change
relative to mean counter VPD. Note that counters located within approximately 5km of city
center are classified as city center counters.

Our fully spatially-disaggregated model (ﬁgure@ shows higher traffic at the majority
of counters on DDA days. However, most counter-level estimates are not statistically

significant at the 10% significance level. One counter at the city center witnesses a statis-
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tically significant traffic decrease (-2%) on DDA days. Traffic does increase significantly
about 1-2% compared to non-DDA days at some periphery counters and in particular at
counters located furthest from the city. In the city center, most daily DDA effect point
estimates range from -1% to +1% although these are with one exception not statistically

significant at 10% level.

Daily DDA Effect by Day-of-the-Week, Location, and Sample Subset
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Figure 10: Daily Don’t Drive Appeal (DDA) effect point estimates by day of the week, counter
location, and sample subset. Percentages relative to average vehicles per counter-day (23,341).

We group counters into those located in the city center and those at the city’s periph-
ery to highlight the spatial heterogeneity in DDA effectiveness and to explore temporal
heterogeneity at this level. figure [10] displays DDA effect point estimates by day of the
week, counter location, and sample subset. On Monday and Friday there is statistically
significant evidence for traffic decreases at the city center. However, these results are
only robust to both the full sample and our true positive and false-negative sub-sample
on Monday. Nevertheless, with the exception of Tuesday, all city center DDA effect es-
timates are close to or below zero, suggesting that the positive overall DDA effect found

in previous sections does not result from increased traffic at the city center.
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Instead, we find evidence that periphery traffic increases may outweigh modest de-
creases at city center locations. In eleven of the fourteen cases depicted in figure
periphery DDA effect estimates are greater than their city center counterpart. Periph-
ery effects are most evident on weekends, and many of the periphery point estimates are
positive or close to zero. However, periphery estimates are not statistically significant at
the 5% level for any day of the week or either subsample. In the vast majority of cases,
periphery point estimates do not exceed 1% of mean daily counter-level traffic and never

exceed 2% of mean daily counter-level traffic.
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Figure 11: Daily Don’t Drive Appeal (DDA) effect point estimates by year, counter location,
and sample subset. Percentages relative to average vehicles per counter-day (23,341).

Figure [I1] shows variations in DDA effectiveness over the PMA program’s lifetime.
The estimated DDA effect at the periphery is almost universally between 0% and +2%
of mean daily traffic from 2016 to 2019, and these estimates are statistically significant
in 2016, 2018, and 2019 for all but one sub-sample (full sample 2016). City center DDA
effects are strongest (highest negative magnitude) in 2017 and 2018, with these two years

seeing an average traffic reduction between 2% and approximately 3% at the city center
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on DDA days relative to average overall traffic levels. City center estimates are, however,

not statistically significant.

6.3 Dynamic DDA Effects
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Figure 12: Don’t Drive Appeal (DDA) effect point estimates over DDA duration by sample
subset. Percentages relative to average vehicles per counter-day (23,341).

A plausible mental model of the effects of a DDA on driving decisions includes
possible dynamic effects (see section . To explore these, we interact DDA day terms
(e.g. first day, second day, etc.) with the DDA effect variable in equation , remove
lagged traffic volumes, and then estimate the daily DDA effect over the DDA duration.
Figure[12]displays DDA effect point estimates for each day of a DDA. In the true positive
and false negative sub-sample, which compares the most similar DDA and non-DDA days
in terms of atmospheric conditions, we find that the DDA increasingly reduces traffic
over the first six days, before traffic rebounds to normal levels after the sixth day. Effect
sizes are very modest at or below 1% of daily mean counter-level traffic and, for the
full-sample, typically of smaller magnitude compared to the sub-sample point estimates.

These results indicate that a small share of drivers may begin to shift away from driving
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as a DDA continues, in particular when DDAs extend for several days. Traffic recovers
to average levels after the sixth day suggesting that drivers’ willingness to persistently

shift their transportation choice during a DDA is limited.
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Figure 13: Don’t Drive Appeal (DDA) Effect over DDA Duration. Models use true positive and
false negative subset of days. Percentages relative to average vehicles per counter-day (23,341).

However, we find this dynamic DDA effect to evolve differently for locations at the
city center compared to the periphery. In figure we split the DDA effect by location
(city center vs. periphery) and estimate considerable, statistically significant decreases
in traffic flows at the city center for the first five days of a DDA while traffic at periphery
counters does not differ significantly from non-DDA days over this time period. Over the
first five DDA days, the magnitude of the DDA effect ranges between -2% to -5% of mean
daily traffic for the city center and hovers between +2% and -1% of mean daily traffic
at the periphery. On DDA days six and seven the city center DDA effect diminishes to
near zero, while the size and statistical significance of periphery estimates suggests that
after DDA day four there may be modest to negligible decreases at periphery locations
(approximately -1% of mean daily traffic).

These dynamic patterns capture some of our theoretical hypotheses from section 3.
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City center traffic does appear to exclusively experience traffic reductions or negligible
effects, which likely aligns with policy-makers’ expectations for the DDA. Further, the
dynamic tapering of the DDA effect at the city center provides some suggestive evidence
of self-control depletion or other norm-based dynamics. However, unlike in figure [4 we
find evidence that the DDA reaches peak effectiveness in the city center on the second and
third DDA day, whereas we hypothesized that effects would be strongest immediately
after broadcasting a DDA.

7 Conclusion

Officials implement air quality alert programs to disseminate air pollution information,
promote avoidance behavior in sensitive populations, and appeal for pollution reductions.
With this paper, we contribute to a growing literature on air quality alert effectiveness
by investigating an alert that encourages commuters not to drive cars on poor air quality
days.

The results of our analysis provide new evidence about the effectiveness of combin-
ing air quality alerts with Don’t Drive Appeals (DDAs) from a well-suited European
metropolitan setting with widespread green political support and a dense public transit
network. We find that the prediction that DDAs reduce driving on DDA days can be
rationalized by appealing to a behaviorally informed model of car owners, but fails an
empirical test: On average, the DDA increases traffic on DDA days by 0.1%-1.9%, con-
trary to the program’s overall objective. We do find two important spatial and temporal
nuances to this result. First, the DDA increases traffic primarily at the city’s periphery
and on weekends. Second, we find the DDA reduces city center traffic on certain week-
days (Mondays and Fridays), possibly to a greater extent during 2017 and 2018, and
over the first five days after a DDA has been broadcast. Importantly, these city center
effects are not universal and always modest (between 0% and -5% of mean daily traffic).
Only in limited cases do they approach -5% mean daily traffic. Our overall DDA effect
and periphery results echo the findings of [Tribby et al.| (2013)), who find Salt Lake City,
USA’s particulate matter alert inadvertently increases traffic in the city by 3%-4%. Our
city center findings are situated between Sexton| (2012)’s no effect result and |Cutter
and Neidell| (2009)’s finding of a 2%-3% traffic reduction on Spare the Air days in San
Francisco, USA. Our analysis, in particular, highlights how spatial and temporal traffic
displacement may be concealed in overall DDA effect estimators.

In this paper we provide two methodological contributions that may inform future

research in this domain. First, we use atmospheric data to create a sub-sample of
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multi-day non-DDA events that are most similar to multi-day DDA events that fulfill
DDA conditions and then compare regression results from this sample to the full sample
throughout. This approach builds confidence in our choice of a “control” group of
non-DDA days, in particular in the context of Stuttgart’s complex, multi-factor DDA
design. Second, we derive insights about DDA effectiveness by conducting a spatially
and temporally disaggregated analysis. The divergence of our disaggregated DDA effect
findings from our overall findings shows that programs with geographic restrictions,
temporal designs, and norms-based messaging like Stuttgart’s DDA may have important
heterogeneities in effectiveness.

Our findings may also caution policymakers interested in combining air quality alerts
with Don‘t Drive Appeals. Air quality alerts are generally considered ineffective policy
for achieving driving reductions, and our study does not provide resounding evidence
that these policies are persistently effective. Our study also establishes that, even if city
center traffic does not inadvertently increase, alerts combined with DDAs may displace
traffic to the periphery. It is not clear in Stuttgart’s scenario whether modest traffic
decreases at the city center and modest traffic increases at the periphery effectively
reduce air pollution exposure in the target population. However, urban policymakers
might value traffic (and emissions) reductions at city centers, where population density
is likely highest, more than moderate increases at the periphery. Our study is limited by
its use of traffic count data. Future research could investigate individual-level responses
to DDAs but would require individual-level commuting data and information about
individual DDA information exposure. Such analyses might also be able to shed light on
socioeconomic dimensions of DDA effectiveness and, with an eye to an equitable mobility

transition, inform policymakers how different groups respond to norms-based messaging.
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A DDA Reclassification Scheme

In order to create a set of “control” days to compare with DDA days, we classify days
by reconstructing DWD’s DDA classification algorithm and slightly loosening the DDA
trigger conditions. We use DWD meteorological data from DWD Open Data and LUBW
air quality data for each day during the PMA seasons from January 1, 2016 to December
31, 2019. Like DWD’s official alert designation, we use daily mean PM10 concentrations
from the Neckartor monitor (Condition 1). As historical DWD forecast data are un-
available, we use actual daily precipitation levels by type (Conditions 1 and 2), hourly
wind speed and direction (Conditions 3 and 6) and radiosonde data (Conditions 4 and
5) from the DWD Open Data database.

Out of 733 PMA season days, we find 350 days where the DDA conditions were
fulfilled compared to 250 DDA days by the DWD. We then compare our set of DDA
days with the actual DWD DDA days and reclassify days into true positive (TP), false
positive (FP), false negative (FN), and true negative (TN) according to the following

conditions:

e True Positive (TP): Both our classification scheme and DWD classify a given day
as a DDA day.

e False Positive (FP): Our classification scheme does not classify a given day as a

DDA day while DWD does.

e False Negative (FN): Our classification scheme classifies a given day as a DDA day
while DWD does not.

e True Negative (TN): Neither our classification scheme nor DWD classify a given
day as a DDA day.

Each of these classes of days is recorded as a dummy variable that equals one when its
conditions are fulfilled and zero otherwise.

We identify 219 true positive DDA days (30%) when a DDA had been broadcast and,
according to our classification scheme, the DDA conditions were met, 31 false positive
DDA days (4%) when a DDA was broadcast but, according to our classification scheme,
the DDA conditions were not met, 162 false negative DDA days (22%) when a DDA was
not called and, according to our classification scheme, the DDA conditions were met, and
321 true negative days (44%) when no DDA was called and the conditions were not met,

according to our classification scheme. From January 1, 2016 to December 31, 2019, the
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city issued a DDA on 250 of 733 possible DDA season days. Overall, we classify 540 of
733 PMA season days (74%) in alignment with actual DDA status (either true positive
or true negative).

We slightly relax several DDA conditions in our reclassification scheme. As DWD
does not provide precipitation forecast data to the public, we use actual rainfall data
for all days and, rather than projecting rainfall, use actual future day rainfall as the
projected rainfall amount. This is unlikely to causes issues as rainfall forecasts, particu-
larly of larger rainfall amounts, are fairly accurate. Furthermore, we consider days with
less than 0.5mm of rainfall as rainless, as we deem this amount of rain as insufficient for
clearing air pollutants from the air. TP, FN, FP, and TN classifications are mutually
exclusive.

In order to reconstruct the conditions of the DWD DDA algorithm outlined in section
2, we first construct six daily dummy variables, each according to one of the following

criteria:

e Criterion 1 equals one if the Neckartor PM10 concentration is greater than or equal

to 30ug/m3, zero otherwise.

e Criterion 2: equals one if total daily rainfall is less than 0.5mm, zero otherwise.

Snowfall and sleet are treated as rainless.

e Criterion 3: equals one if less than two-thirds of a day’s hourly wind direction
measurements are between 180°and 330°and daily mean wind speed is less than 3

km per hour, zero otherwise.

e Criterion 4: equals one if the nighttime inversion height is over 100 meters from the
ground, zero otherwise. Using data from the 12am radiosonde flight, we calculate
the height of the night time inversion level as the height at which air temperatures

have risen at least 1°C compared to the air temperature at the ground.

e Criterion 5: equals one if the daytime mixing layer height is under 500 meters from
the ground, zero otherwise. Using data from the 12pm noon radiosonde flight, we
calculate the height of the daytime mixing layer using the 5 lowest altitudes at
which the radiosonde measures an increase in temperature with increasing alti-
tude. This criterion is met when at least 3 of the 5 lowest altitudes at which the

radiosonde measures increasing temperatures are below 500m.

e Criterion 6: equals one when the average of a day’s 24 hourly wind speed mea-

surements is less than 3 km per hour, zero otherwise.
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These six criteria are analogous to the six DWD DDA conditions. We then evaluate two

possible paths to calling a DDA on a given day, as depicted in figure

e Path 1: is fulfilled when, on a given day during the PMA season, Criterion 1 is met
and Criterion 2 is met on that day (Issue Day) and the following day (Bridge Day).
This corresponds to the left-most branch of the DWD Decision Tree in figure

where the primary condition, Condition 1 is met.

e Path 2: is fulfilled when, on a given day during the PMA season, Criterion 2 is
met on the following day (Bridge Day) and the day thereafter (First Forecast Day)
and Criterion 3 is met, while at least one of Criterion 4 or Criterion 5 is met, and

at least 4 Conditions are met overall.

If either of these paths are fulfilled, we classify the day as a DDA day according to
our algorithm. We then remove isolated DDA days (i.e. single DDA days with neither
a DDA before or after a given classified DDA day) and add DDA days when there were
single day gaps between two groups of DDA days of more than one day (i.e. the necessary
condition to lift the DDA was not fulfilled).
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B Additional Regression Results

Table 5: OLS Regression Results: Overall DDA Effect

(1) (2) 3) (4) (5) (6)
log(VPD)  log(VPD) log(VPD) log(VPD) log(VPD) log(VPD)
Don’t Drive Appeal 0.00772*  0.0197*** 0.00632 0.00321 0.00414 -0.00455
[+180.2] [4+473.7] [+153.8] [+78.9] [4+100.9] [-112.7]
(0.00330)  (0.00501) (0.00369) (0.00693) (0.00450) (0.00652)
Full Sample: Y N N N N N
TP & FN Sample: N Y N Y N Y
Holidays Excluded: N N Y Y Y Y
Bridge & Issue Days Excluded: N N N N Y Y
Observations 26,626 11,996 20,899 10,040 16,787 7,641
Counters 43 43 43 43 43 43
Days 733 381 584 320 509 272
PMA Days 250 219 236 212 236 212
Non-PMA Days 483 162 348 108 273 60
Mean VPD 23,341 24,046 24,238 24,586 24,361 24,764
Mean log(VPD) 9.70 9.74 9.75 9.77 9.76 9.77

Dependent variable is log of vehicles per counter-day (VPD). Robust standard errors clustered on 22
counter sites in parentheses. All models include single-day lagged traffic, a full set of weather controls,
first, second, and third-day lagged weather controls, counter fixed effects, year-month fixed effects,
and day-of-the-week and holiday dummies. Absolute change relative to mean VPD in brackets.

*: Significant at 10%, **: Significant at 5%, ***: Significant at 1%.
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Specification Chart: Daily DDA Effect
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Figure 14: Specification chart depicting DDA effect point estimates for 90 OLS regressions.
Panel A: Full sample, Panel B: True positive and false negative subsample, Panel C: Full
sample without holidays, Panel D: True positive and false negative subsample without holidays,
Panel E: Full sample without holidays, bridge, or issue days, Panel F: True positive and false
negative subsample without holidays, bridge, or issue days. Bottom panel tracks specification
additions. In each panel from left to right: counter fixed effects, year-month fixed effects, site
standard errors, average daily temperature, rainfall amount, snow amount, sleet amount, relative
humidity, sunshine hours, average daily wind speed, lagged traffic flows, single day lag of all
variables, second day lag of all variables, and third day lag of all variables.
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